Welcome to Today’s Webinar

December 16, 2020

Passive House Design and Residence Halls: The Perfect Pairing
Passive House and Campus Housing
The Perfect Pairing

Jennifer Adams Peffer, AIA
Campus Architect and Director of Architecture,
Planning and Project Development,
University of Toronto Scarborough

Deborah Moelis, AIA, CPHD
Principal, Handel Architects

Katie Donahue, AIA, LEED GA, NCARB
Architect, Handel Architects
This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to constitute approval, sponsorship or endorsement by AIA of any method, product, service, enterprise or organization.

The statements expressed by speakers, panelists, and other participants reflect their own views and do not necessarily reflect the views or positions of The American Institute of Architects, or of AIA components, or those of their respective officers, directors, members, employees, or other organizations, groups or individuals associated with them.

Questions related to specific products and services may be addressed at the conclusion of this presentation.
Course / Learning Objectives

2. Discuss how an integrated planning approach was implemented to enable the campus to realize its goal of a Passive House building.

3. Identify how Passive House design principles are incorporated into the Residence Hall design documents using UTSC as a case study.

4. Discover how to restructure your RFP packages/project delivery approaches to allow for proper incorporation of Passive House design into a project.
University of Toronto Scarborough (UTSC): A Campus Committed to Experimentation and Innovation

Campus opens 1967
UTSC: 2020 Campus Facts and Figures

- **Total Number of Students**: 14,068
 - 28% International from over 100 countries
 - 72% Domestic
- **77% with curricular experiential learning experience**
- **282 student clubs**
- **FALL 2019 graduates**: 2,384
- **TOTAL ALUMNI**: 55,267
UTSC: Current Innovation

1. Design excellence
2. Aspiration to influence change
3. Create a culture of leadership.
4. Create an inclusive, healthy learning and working environment
Campus focus on Health and Wellness

Healthy Campus Initiative

Derives from the Okanagan Charter:

• The Healthy Campus Initiative strives to embed health in all aspects of campus culture, operations and academic mandates.

• To lead health promotion action and collaboration locally and globally.

• Our Goal is to recognize all campus activities, events, programs, initiatives that align with the Healthy Campus mandate.
The Student Demographics Have Changed - Energy Usage and Cost

Students require more energy; the University aims to reduce overall energy consumption

<table>
<thead>
<tr>
<th></th>
<th>1973</th>
<th>Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition¹</td>
<td>$417 CAD ($306 USD)</td>
<td>$6,100 CAD ($4,477 USD) (Doubled in real dollars)</td>
</tr>
<tr>
<td>Air Conditioning</td>
<td>no - Open a window!</td>
<td>AC expected</td>
</tr>
<tr>
<td>Plug Load needs</td>
<td>Low! Lighting, stereos</td>
<td>High! Lighting, WiFi, gaming, computers, refrigerators</td>
</tr>
<tr>
<td>Source of Energy</td>
<td>Primarily Oil</td>
<td>Leaning to electrification</td>
</tr>
<tr>
<td>Diversity of user group</td>
<td>Primarily local</td>
<td>25% international</td>
</tr>
</tbody>
</table>

¹ Value of CA currency from 1970 to today: $1 = $6.79
The Student Demographics Have Changed - Health and Wellness

Students require an environment that is sensitive to their needs

<table>
<thead>
<tr>
<th></th>
<th>1973</th>
<th>Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mental Health Support</td>
<td>Minimal Social Services</td>
<td>Holistic awareness of mental health needs</td>
</tr>
<tr>
<td>Accessibility needs</td>
<td>Lack of accommodation</td>
<td>Inclusive built environment</td>
</tr>
<tr>
<td>Emotional Support</td>
<td>Independent minded - very few support services</td>
<td>Extensive services expected - Resident advisors, live-in student support advisors</td>
</tr>
<tr>
<td>Amenity Spaces</td>
<td>None expected</td>
<td>Study rooms, collaboration rooms, elaborate food services 24/7</td>
</tr>
<tr>
<td>Interior Environment</td>
<td>Very little focus on healthy interior environment</td>
<td>Control of Allergies Temperature control Infiltration of natural light Air Quality/Circulation Acoustic mediation</td>
</tr>
</tbody>
</table>
What is driving your decision making process at the onset of a new building project? Choose 2:

1. **Health and wellness**
2. **Sustainability** in regard to curtailing energy usage
3. **Sustainability** in regard to materials/embodied energy
4. **User experience**, ie amenities, student services
5. **Affordability**
6. **Durability** of the building to stand the test of time
WHAT IS PASSIVE HOUSE?

- **A rigorous certification** program whose primary focus is to curtail energy usage and increase user comfort.
- Unlike **pass/fail checklists** of Prescriptive standards, Passive House is an overall holistic approach based on ultimate full building Performance.
- Focus is on **Building Enclosure** and **MEP systems**.
- Requires careful detailing during design and a strict quality control program during construction to yield an extremely **well built building**.
WHY PASSIVE HOUSE TO COMBAT GLOBAL WARMING

- **Reduce energy** needed to operate a building by 60-80%
- **Eliminate** dependence on fossil fuels
- **Reduce** carbon emissions
- **Lower** greenhouse gas impact
- **Ease compliance** with government mandates (new laws, codes, standards)
Median Energy Use of All NYC Buildings over 200,000 sq. ft.

130.0 kBTU/SF/yr (PEUI)

Energy Use of Passive House Buildings

38.1 kBtu/ft²/yr (pEUI)

60-80% REDUCTION

Doing radically more with radically less
Making the Case for PH
The Passive House Impact: Source Energy Use Intensity (pEUI) Distribution Comparison

Typical NYC Multifamily Residential Building

- 38% HEATING
- 15% PLUG LOADS
- 15% DHW DEMAND
- 14% PUMP & AUX ELEC
- 10% LIGHTING
- 5% COOLING

Multifamily Passive House Building

- 34% PLUG LOADS
- 29% DHW DEMAND
- 13% LIGHTING
- 13% PUMP & AUX ELEC
- 5% HEATING
- 6% COOLING

61% REDUCTION

130 kBtu/ft²/yr → 50 kBtu/ft²/yr

1IECC 2018 Average

SCUP - Passive House and Campus Housing | © Handel Architects 2020
Passive House Institute (PHI) Performance Criteria for Certification

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Source Energy Allowed ((p\text{EUI}))</td>
<td>38.1 kBTu/ft(^2)/yr*</td>
</tr>
<tr>
<td>Heating Energy Allowed</td>
<td>Max 4.75 kBTu/ft(^2)/yr</td>
</tr>
<tr>
<td>Cooling Energy Allowed (NY)</td>
<td>Max 5.39 kBTu/ft(^2)/yr (region specific)</td>
</tr>
<tr>
<td>Minimize Air Infiltration (5-10 times tighter than typical)</td>
<td>0.6 ACH (Air Changes per Hour) through the facade at 50 pascals of pressure</td>
</tr>
<tr>
<td>Exhaust and Supply Ventilation</td>
<td>Balanced, with energy recovery</td>
</tr>
</tbody>
</table>

*Can be adjusted for density and use.

\(p\text{EUI (source)} \text{ kBtu/ft}^2/\text{yr}\)

130.0 IECC 2018 Average from NYSERDA Energy 2018 Report

38.1* Passive House
WHY PASSIVE HOUSE

HEALTH AND WELLNESS

- **Offer a healthier** interior environment to our students
- **Provide superior indoor air quality** via fresh filtered ventilation to every habitable rooms 24/7
- **Offer a quieter** interior environment to our students
- **Increase durability** of building materials
- **Eliminate** drafts/temperature differentials and provide **superb thermal comfort**
WHY PASSIVE HOUSE
FOR UNIVERSITY OF TORONTO SCARBOROUGH

- **Reduce energy** needed (and cost) to operate the building
- **Align** with the Okanagan Charter for Health Promoting Universities and Colleges
- **Align** with overall Campus Strategic Plan
- **Enlighten** the student body - Build Advocacy
- **Bring Passive House** techniques to the construction industry
- **Lead by Example** - Put the University at the forefront of innovation
Initial Project Planning and Internal Approvals
Gathering Stakeholder Input

Need to hit all the checks and balances

• Financing Partners
 Capital planning at UT is in-house.
 UT process for Residential buildings require outside funding from like-minded partner

• Can we afford PH?

• 2016 UTSC Team attends Darmstadt, Germany PHI Conferences.

• 2017 Fengate joins and attends PHI Conference in Vienna, Austria to learn more about PH.

• UTSC attends tour of Cornell Tech in NYC

• Need the support of UT Governing bodies for capital projects
 UTSC Campus Council
 Academic, Business, Planning and Budget

• UT Sustainability Group
Assembling the RFP

Establishing Criteria

- University wanted to “explore the potential” for PH certification
- RFP required Tier 3 Toronto Green Standards, but DESIRED better
- University standard: 40% better than ASHRAE
- Created a Passive House feasibility phase
Making the Case for PH

Speaking to the stakeholders

- UT Sustainability Group
 - Illustrate energy savings
 - Tier 3 Analysis
 - 40% Better than ASHRAE Analysis

- Campus Planning/Facilities Management
 - System Design
 - Facade Design
 - Flexibility of PH to suit the project

- Financial oversight
 - Cost Comparison exercises
Making the Case for PH
Tier 3 Vs Passive House

Tier 3
- Façade R value: R 20-30
- Roof R value: R 30
- Double Glazing
- Non-VRF systems possible, but difficult

Both
- Conduct whole building air tightness test
- Provide Energy Recovery
- Reduce Energy needed for Domestic Hot Water delivery
- Specify extremely Low Energy Power, Pumps, Electrical Equipment
- Provide extensive occupancy sensors connected to MEP systems
- Provide Lighting Controls and an Addressable system
- LED lighting, Energy Star appliances throughout
- Fresh air ventilation to each habitable room

Passive House
- Taping at all façade joints, taping around all pipe penetrations to meet stringent air tightness criteria
- Thermally break all metal to metal connections.
- Façade R Value: R 25-30
- Roof R value upwards of R 40
- Triple Glazing
- Extremely low U values for windows
- VRF heating and cooling system
FACADE SELECTION

<table>
<thead>
<tr>
<th>Higher Cost</th>
<th>Lower Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field installed rain screen on stud wall, taped foil faced insulation</td>
<td></td>
</tr>
<tr>
<td>Prefab “Super Panel” w/ insulation, membrane air barrier</td>
<td></td>
</tr>
<tr>
<td>Precast panel + insulated wall, membrane air barrier</td>
<td></td>
</tr>
<tr>
<td>Brick + block cavity wall, liquid air barrier</td>
<td></td>
</tr>
<tr>
<td>EIFS, on metal stud, taped foil faced insulation</td>
<td></td>
</tr>
</tbody>
</table>

WINDOW SELECTION

<table>
<thead>
<tr>
<th>Higher Cost</th>
<th>Lower Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiberglass</td>
<td></td>
</tr>
<tr>
<td>UPVC</td>
<td></td>
</tr>
<tr>
<td>Aluminium</td>
<td></td>
</tr>
<tr>
<td>Curtain wall</td>
<td></td>
</tr>
</tbody>
</table>

HVAC / MECH SELECTION

<table>
<thead>
<tr>
<th>Higher Cost</th>
<th>Lower Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>All air limited zone</td>
<td></td>
</tr>
<tr>
<td>Electric fan coil</td>
<td></td>
</tr>
<tr>
<td>VRF: 3-Pipe multi-zone maximum individual control</td>
<td></td>
</tr>
</tbody>
</table>

Making Informed Decisions Early

$*

$$

$$

$$
Facade Selection: Wall Composition

Panelized System
R-19 Average

Masonry
R-20 Effective

Curtainwall
R-18 Effective

The House at Cornell Tech

Sendero Verde Building A

Winthrop Center
<table>
<thead>
<tr>
<th>Window Performance</th>
<th>U-VALUE GLASS</th>
<th>U-VALUE WHOLE WINDOW</th>
<th>SOLAR HEAT GAIN COEFFICIENT (SHGC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARD WINDOW</td>
<td>0.27</td>
<td>0.45</td>
<td>0.31</td>
</tr>
<tr>
<td>Double-glazed, Low-E Glass Argon Gas Metal Spacer Metal Frame</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNELL TECH</td>
<td>0.11</td>
<td>0.17</td>
<td>0.28</td>
</tr>
<tr>
<td>Triple-glazed, Low-E Glass Warm Edge Spacer Thermally Broken Aluminum Frame</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTSC</td>
<td>0.096</td>
<td>0.13</td>
<td>0.38</td>
</tr>
<tr>
<td>Triple-glazed, Low-E Glass Warm Edge Spacer Thermally Broken uPVC Frame</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Report on UTSC Energy Usage - Then & Now

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2020 - PH</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility Costs</td>
<td>$450,000 CAD ($329,580 USD)</td>
<td>$150,000 CAD ($109,860 USD)</td>
<td>66% Decrease!</td>
</tr>
<tr>
<td>Green House Gas Emissions</td>
<td>30 kg per m²</td>
<td>5 kg per m²</td>
<td>83% Decrease!</td>
</tr>
</tbody>
</table>

Changes are related to earlier times when we ran on dirty oil, and before sustainable, energy saving measures were considered or implemented.

Source: UTSC Facilities management
HVAC Selection: Heating & Cooling Delivery Method

<table>
<thead>
<tr>
<th>Passive House / Efficiency</th>
<th>Modeling Required to prove feasibility. Efficiency may not comply.</th>
<th>X</th>
<th>X</th>
<th>XX</th>
<th>XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>EER</td>
<td>9.7</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>11-14</td>
</tr>
<tr>
<td>System Flexibility</td>
<td>Heating and Cooling Year Round</td>
</tr>
<tr>
<td>Cooling</td>
<td>Compressor in each room</td>
<td>Compressor in each room.</td>
<td>Compressor in each room.</td>
<td>Compressor located on roof / mechanical room</td>
<td>Compressor located on roof / mechanical room</td>
</tr>
<tr>
<td>Boiler plant</td>
<td>Not Required</td>
<td>-</td>
<td>Required - 75% of the Heating Capacity - Conventional 100% capacity for Hybrid</td>
<td>Required - 75% of the Heating Capacity - Conventional 100% capacity for Hybrid</td>
<td>Not Required</td>
</tr>
<tr>
<td>Cooling Tower</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Outdoor Mechanical Space (sqft)</td>
<td>-</td>
<td>-</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>Pumps / HX</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Location of Unit</td>
<td>Perimeter</td>
<td>Perimeter inside closet with ductwork into the unit</td>
<td>Perimeter / Interior</td>
<td>Interior</td>
<td>Interior</td>
</tr>
<tr>
<td>Zone Control</td>
<td>Per Room</td>
<td>Per apartment</td>
<td>Interior: One per room / One Per apartment</td>
<td>Interior: One per room / One Per apartment</td>
<td>Interior: One per room / One Per apartment</td>
</tr>
<tr>
<td>Acoustical Level</td>
<td>XXX</td>
<td>XXX</td>
<td>XX</td>
<td>XX</td>
<td>X</td>
</tr>
<tr>
<td>First Cost</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>Maintenance Cost</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>Remarks</td>
<td>1. Lowest cost</td>
<td>1. Low first cost</td>
<td>1. No insulation on piping</td>
<td>1. Difficult to find leaks</td>
<td>1. Difficult to find leaks</td>
</tr>
<tr>
<td>PH Comments</td>
<td>Rejected Unacceptable Efficiency</td>
<td>Rejected Unit leaks outdoor air into building.</td>
<td>Compiles: Requires boiler plant or Combined w/air to water heat pumps. Pump energy impacts model.</td>
<td>Compiles: Most energy efficient system. Simultaneous heating and cooling is expensive.</td>
<td>Compiles: Requires boiler plant. Pump energy impacts model. Simultaneous heating and cooling is expensive.</td>
</tr>
</tbody>
</table>
Making the Case for PH

Cost Comparison - VRF vs. 2/4 Pipe Fan Coil

<table>
<thead>
<tr>
<th></th>
<th>UTSC</th>
<th>Comparable 1</th>
<th>Comparable 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suite Count</td>
<td>342</td>
<td>204</td>
<td>172</td>
</tr>
<tr>
<td>GFA - Fit out space (m²)</td>
<td>26,690</td>
<td>17,422</td>
<td>17,076</td>
</tr>
<tr>
<td>GFA / Suite (m²)</td>
<td>78.0</td>
<td>85.4</td>
<td>99.3</td>
</tr>
<tr>
<td>Common area %</td>
<td>42%</td>
<td>40%</td>
<td>43%</td>
</tr>
<tr>
<td>Mechanical System</td>
<td>Air-Cooled VRF</td>
<td>4-Pipe FCU</td>
<td>2-Pipe FCU</td>
</tr>
<tr>
<td>Plumbing $/m² (ex Site)</td>
<td>$359.95</td>
<td>$398.95</td>
<td>$314.00</td>
</tr>
<tr>
<td>Plumbing $/Suite</td>
<td>$28,090.83</td>
<td>$34,071.11</td>
<td>$31,173.63</td>
</tr>
</tbody>
</table>

Note: Values are in Canadian dollars $1 CAD = $.75 USD

16-Jul-19
Stats: Project Characteristics & Costs
Sample Set: 16 Projects

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Min</th>
<th>Max</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Units</td>
<td>30</td>
<td>385</td>
<td>184</td>
</tr>
<tr>
<td>Gross SF</td>
<td>33,729</td>
<td>386,859</td>
<td>171,917</td>
</tr>
<tr>
<td>Floors</td>
<td>6</td>
<td>37</td>
<td>15</td>
</tr>
<tr>
<td>% Increase for PH</td>
<td>1%</td>
<td>8%</td>
<td>4%</td>
</tr>
</tbody>
</table>
UTSC Passive House Design

Energy Savings Reduces Energy Cost: Reduce Green House Gas Emissions

Est. Add for PH Design at 100% DD (2% overall estimate) = $1,481,000 US

Est. Yearly savings as compared to code compliant design powered by electricity = $82,885 US

18 YR PAYBACK

GHG emission from code compliant SB-10 Building = 206 tonnes CO2e/yr

GHG emission from UTSC = 154 tonnes CO2e/yr

52 Tonnes Savings (25% Less)
HOW TO ACHIEVE PASSIVE HOUSE?

PH Implementation Process

OWNERS

ARCHITECT

COST ESTIMATOR/DB CONTRACTOR

CONSULTANTS AFFECTED BY PASSIVE HOUSE
- MEP
- Structure
- Code
- Envelope
- Energy/Passive House

PASSIVE HOUSE CONSULTANT

PH CERTIFIER certifies application

PHI (Passive House Institute - Germany) provides final certification

PH CERTIFICATION
Implementing Passive House Design at UTSC

Enclosure: Roofs, Walls, and Foundation
- Strive for a compact shape
- Take building orientation into account
- Carefully detail to achieve air tightness
- Select Windows with exceptionally low U-Values.
- Provide Continuous insulation and thermal bridge free detailing leading to high R-Values

MEP Systems
- Provide a high performance, low energy heating and cooling system that is powered primarily by electricity
- Ventilate all habitable spaces with constant fresh air with heat recovery
- Balance exhaust and supply ventilation within 10% of one another
- Specify energy efficient equipment, lighting and appliances
University of Toronto at Scarborough (UTSC)

Project Design Team:
Handel Architects w/ CORE Architects
Steven Winter Associates
Integral Group
RWDI - Envelope Consultants

SCUP - Passive House and Campus Housing | © Handel Architects 2020
Student Residences: Project Challenges

PROJECT CHALLENGES

• Supply chain – PH compliant windows for climate zone 6
• Colder climate leading to stricter window criteria
• Dining hall – very high energy intensity for commercial kitchens
• Conflict between U of T energy efficiency requirements, building type and Passive House criteria
• Incredibly dense building – Source EUI target needs adjusting
UTSC: Building Plans

Ground Floor Plan
UTSC: Building Plans

Planning - Typical Floor Plan

- Community A
- Community B
- Community C
- Common Area

Community B

Community A

Community C
Passive House Envelope & Certified Area

Ph Airtight Layer
Ph Certified Area
Non-Certified Area

The PH Standard is Flexible

Facade: Stickbuilt Rainscreen

<table>
<thead>
<tr>
<th>Component</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>R-40</td>
</tr>
<tr>
<td>Walls</td>
<td>R-30 Avg.</td>
</tr>
<tr>
<td>Windows</td>
<td>U: .013</td>
</tr>
</tbody>
</table>

UTSC
Stick-Built Wall System: Site Built

- High performance triple glazing
- Insulated uPVC Frame
- Continuous Air/Water Barrier/Permeable Vapor Barrier
- Permeable Vapor Retarder
- 18 Gauge Structural Steel Stud Wall
- Built on site
- Standing Seam Metal Rainscreen
- CIPC

University of Toronto
Stick Built Rainscreen
Quality Control Pays Off
Final Blower Door Test

• Final Blower Door Test results for The House were .15 Air Change/Hour (ACH).
• Passive House requirements allow a maximum .6 ACH.
Heating & Cooling: VRF

- Roof mounted condensers
- System is zoned vertically
- Refrigerant runs are primarily vertical

SPECIFICATIONS

- **Capacity**
 - **Cooling**: 6,000 Btu/h
 - **Heating**: 6,700 Btu/h

- **Power Source**: 208 / 230V, 1-phase, 60Hz
- **Power Consumption**
 - **Cooling**: 0.05 kW
 - **Heating**: 0.03 kW
- **Current**
 - **Cooling (208/230V)**: 0.42 / 0.41A
 - **Heating (208/230V)**: 0.32 / 0.31A
 - **Minimum Circuit Ampacity (MCA) (208/230V)**: 0.47 / 0.50 A
 - **Maximum Overcurrent Protection (MOCP) Fuse**: 15 A
- **External Finish**: Galvanized Steel Sheets
- **External Dimensions**
 - **Inches**: 7-7/8 h x 31-1/8 w x 27-9/16 d
 - **mm**: 200 h x 790 w x 700 d
- **Net Weight**: 42 lbs / 19 kg

- **Coil Type**: CrossFin (Aluminum Fin and Copper Tube)
- **Fan Type x Quantity**: Sirocco Fan x 2
- **Rate (Low - Mid - High)**: 176 - 212 - 247 CFM
- **External Static Pressure**: 0.02 - 0.06 - 0.14 - 0.20"WG
- **Motor Type**: DC Motor
- **Air Filter**: Polypropylene Honeycomb
- **Refrigerant Piping Dimensions (R410A)**
 - **Liquid (High Pressure)**: 1/4" / 6.35 mm Brazed
 - **Gas (Low Pressure)**: 1/2" / 12.7 mm Brazed
- **Drainpipe Dimension**: O.D. 1-1/4" / 32 mm
- **Sound Pressure Levels**
 - **Low - Mid - High**: 22 - 24 - 28 dB(A)

Model: PEFY-P06NMSU-E

GENERAL FEATURES

- Dual set point functionality (*1)
- Multiple fan speed settings
- Auto fan mode
- Built-in condensate lift; lifts to 21-11/16" (550 mm)
- 7 - 7/8" (200 mm) high for low ceiling heights

OPTIONS

- * Cooling / Heating capacity indicated at the maximum value at operation under the following conditions:
 - **External Heater Adapter**: PAC-YU25HT

Note:
Ventilation air to be introduced independent of or in series with VRF indoor units. Please refer to local codes for the required ventilation rates specific to the application.

Specifications are subject to change without notice.

*1 – All components of the system must be compatible. For more details on system compatibility, please refer to Technical Bulletin 100-151 available on our website.
Balanced Ventilation with Heat Recovery

- All bedrooms and living rooms require supply air, balanced within 10% of exhaust
- Conflict in codes regarding amount of Ventilation: LEED / CODE / PH
- Delivery methodology:
Ventilation

Central:
RISER PER SUITE
It’s All About The Students!

- Enhance the Dormitory Room Experience!
- Great acoustical separation from neighbor and exterior.
- Low cost for heating and cooling.
- Comfortable temperatures, with option for control.
- Comfortable humidity control.
- Healthy filtered fresh air 24/7
- Light filled rooms with operable windows
- Colors and materials that calm and protect
Thank You!

Jennifer Adams Peffer: jennifer.adams@utoronto.ca
Deborah Moelis: dmoelis@handelarchitects.com
Questions?
Upcoming Events

WEBINAR | January 13, 2021

WORKSHOP | January 15, 2021
SCUP Planning Institute
Laying the Groundwork for Strategic Planning

WEBINAR | January 19, 2021
Unleashing the Power of Difference: Creating Neuro-Inclusive Learning Spaces